Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.713
Filtrar
1.
J Drug Target ; : 1-56, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656224

RESUMO

Atherosclerosis (AS) is considered to be one of the major causes of cardiovascular disease. Its pathological microenvironment is characterized by increased production of reactive oxygen species, lipid oxides, and excessive inflammatory factors, which accumulate at the monolayer endothelial cells in the vascular wall to form AS plaques. Therefore, intervention in the pathological microenvironment would be beneficial in delaying AS. Researchers have designed biomimetic nanomedicines with excellent biocompatibility and the ability to avoid being cleared by the immune system through different therapeutic strategies to achieve better therapeutic effects for the characteristics of AS. Biomimetic nanomedicines can further enhance delivery efficiency and improve treatment efficacy due to their good biocompatibility and ability to evade clearance by the immune system. Biomimetic nanomedicines based on therapeutic strategies such as neutralizing inflammatory factors, ROS scavengers, lipid clearance and integration of diagnosis and treatment are versatile approaches for effective treatment of AS. The review firstly summarizes the targeting therapeutic strategy of biomimetic nanomedicine for AS in recent 5 years. Biomimetic nanomedicines using cell membranes, proteins, and extracellular vesicles as carriers have been developed for AS.

2.
Curr Nutr Rep ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656688

RESUMO

PURPOSE OF REVIEW: Global health concerns persist in the realm of cardiovascular diseases (CVDs), necessitating innovative strategies for both prevention and treatment. This narrative review aims to explore the potential of short-chain fatty acids (SCFAs)-namely, acetate, propionate, and butyrate-as agents in the realm of postbiotics for the management of CVDs. RECENT FINDINGS: We commence our discussion by elucidating the concept of postbiotics and their pivotal significance in mitigating various aspects of cardiovascular diseases. This review centers on a comprehensive examination of diverse SCFAs and their associated receptors, notably GPR41, GPR43, and GPR109a. In addition, we delve into the intricate cellular and pharmacological mechanisms through which these receptors operate, providing insights into their specific roles in managing cardiovascular conditions such as hypertension, atherosclerosis, heart failure, and stroke. The integration of current information in our analysis highlights the potential of both SCFAs and their receptors as a promising path for innovative therapeutic approaches in the field of cardiovascular health. The idea of postbiotics arises as an optimistic and inventive method, presenting new opportunities for preventing and treating cardiovascular diseases.

3.
Proc Natl Acad Sci U S A ; 121(15): e2400675121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564634

RESUMO

Atherosclerosis is fueled by a failure to resolve lipid-driven inflammation within the vasculature that drives plaque formation. Therapeutic approaches to reverse atherosclerotic inflammation are needed to address the rising global burden of cardiovascular disease (CVD). Recently, metabolites have gained attention for their immunomodulatory properties, including itaconate, which is generated from the tricarboxylic acid-intermediate cis-aconitate by the enzyme Immune Responsive Gene 1 (IRG1/ACOD1). Here, we tested the therapeutic potential of the IRG1-itaconate axis for human atherosclerosis. Using single-cell RNA sequencing (scRNA-seq), we found that IRG1 is up-regulated in human coronary atherosclerotic lesions compared to patient-matched healthy vasculature, and in mouse models of atherosclerosis, where it is primarily expressed by plaque monocytes, macrophages, and neutrophils. Global or hematopoietic Irg1-deficiency in mice increases atherosclerosis burden, plaque macrophage and lipid content, and expression of the proatherosclerotic cytokine interleukin (IL)-1ß. Mechanistically, absence of Irg1 increased macrophage lipid accumulation, and accelerated inflammation via increased neutrophil extracellular trap (NET) formation and NET-priming of the NLRP3-inflammasome in macrophages, resulting in increased IL-1ß release. Conversely, supplementation of the Irg1-itaconate axis using 4-octyl itaconate (4-OI) beneficially remodeled advanced plaques and reduced lesional IL-1ß levels in mice. To investigate the effects of 4-OI in humans, we leveraged an ex vivo systems-immunology approach for CVD drug discovery. Using CyTOF and scRNA-seq of peripheral blood mononuclear cells treated with plasma from CVD patients, we showed that 4-OI attenuates proinflammatory phospho-signaling and mediates anti-inflammatory rewiring of macrophage populations. Our data highlight the relevance of pursuing IRG1-itaconate axis supplementation as a therapeutic approach for atherosclerosis in humans.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Humanos , Camundongos , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Colesterol , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Lipídeos , Placa Aterosclerótica/tratamento farmacológico , Succinatos/metabolismo
4.
Atherosclerosis ; 393: 117554, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38663275

RESUMO

BACKGROUND AND AIMS: Long noncoding RNAs (lncRNAs) play important roles in the progression of atherosclerosis. In this study, we identified an uncharacterized lncRNA, Liver Expressions by PSRC1 Induced Specifically (LEPIS). This study aimed to clarify the mechanism though which LEPIS affects atherosclerosis (AS). METHODS: The expression of LEPIS and its potential target, tropomodulin 4 (TMOD4), was increased in the livers of ApoE-/- mice fed a high-fat diet (HFD). An ApoE-/- mouse model in which LEPIS or TMOD4 was overexpressed in the liver was established. The plaque load in the aorta was assessed, plasma was collected to measure blood lipid levels, and the liver was collected to study cholesterol metabolism. RESULTS: We found that both LEPIS and TMOD4 increased the AS burden and reduced hepatic cholesterol levels. A further study revealed that LEPIS and TMOD4 affected the expression of genes related to hepatic cholesterol homeostasis, including proprotein convertase subtilisin/kexin type 9 (PCSK9) and low-density lipoprotein receptor (LDLR), which are closely related to hypercholesterolemia. Mechanistically, human antigen R (HuR), an RNA-binding protein (RBP), was shown to be critical for the regulation of TMOD4 by LEPIS. Furthermore, we found that verexpression of LEPIS promoted the shuttling of HuR from the nucleus to the cytoplasm, enhanced the stability of TMOD4 mRNA, and in turn promoted the expression of TMOD4. In addition, TMOD4 was found to affect intracellular cholesterol levels through PCSK9. CONCLUSIONS: These results suggest that the LEPIS-HuR-TMOD4 axis is a potential intervention target for dysregulated hepatic cholesterol homeostasis and AS and may provide the basis for further reductions in the circulating LDL-C concentration and arterial plaque burden.

5.
J Ethnopharmacol ; : 118209, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663779

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dan-shen Yin (DSY), a traditional prescription, has been demonstrated to be effective in decreasing hyperlipidemia and preventing atherosclerosis (AS), but its mechanism remains unknown. We hypothesized that DSY activates farnesoid X receptor (FXR) to promote bile acid metabolism and excretion, thereby alleviating AS. AIM OF THE STUDY: This study was designed to explore whether DSY reduces liver lipid accumulation and prevents AS by activating FXR and increasing cholesterol metabolism and bile acid excretion. MATERIALS AND METHODS: The comprehensive chemical characterization of DSY was analyzed by UHPLC-MS/MS. The AS models of ApoE-/- mice and SD rats was established by high-fat diet and high-fat diet combined with intraperitoneal injection of vitamin D3, respectively. The aortic plaque and pathological changes were used to evaluate AS. Lipid levels, H&E staining and oil red O staining were used to evaluate liver lipid accumulation. The cholesterol metabolism and bile acid excretion were evaluated by enzyme-linked immunosorbent assay, UPLC-QQQ/MS. In vitro, the lipid and FXR/bile salt export pump (BSEP) levels were evaluated by oil red O staining, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. RESULTS: A total of 36 ingredients in DSY were identified by UPLC-MS/MS analysis. In vivo, high-dose DSY significantly inhibited aortic intimal thickening, improved arrangement disorder, tortuosity, and rupture of elastic fibers, decreased lipid levels, and reduced the number of fat vacuoles and lipid droplets in liver tissue in SD rats and ApoE-/- mice. Further studies found that high-dose DSY significantly reduced liver lipid and total bile acids levels, increased liver ursodeoxycholic acid (UDCA) and other non-conjugated bile acids levels, increased fecal total cholesterol (TC) levels, and augmented FXR, BSEP, cholesterol 7-alpha hydroxylase (CYP7A1), ATP binding cassette subfamily G5/G8 (ABCG5/8) expression levels, while decreasing ASBT expression levels. In vitro studies showed that DSY significantly reduced TC and TG levels, as well as lipid droplets, while also increasing the expression of ABCG5/8, FXR, and BSEP in both HepG2 and Nr1h4 knockdown HepG2 cells. CONCLUSION: This study demonstrated that DSY promotes bile acid metabolism and excretion to prevent AS by activating FXR. For the prevent of AS and drug discovery provided experimental basis.

6.
RMD Open ; 10(2)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38663882

RESUMO

OBJECTIVES: Cardiovascular comorbidities are common in patients with autoimmune diseases. This study investigates the extent of subclinical atherosclerosis in patients with primary Sjögren's syndrome (pSS). Correlations with clinical factors such as organ involvement (OI) or disease activity were analysed and oxLDL antibodies (oxLDL ab) were measured as potential biomarkers of vascular damage. METHODS: Patients with pSS were consecutively included from the rheumatology outpatient clinic. Age- and sex-matched controls were recruited (2:1 ratio). Data collection was performed by a standardised questionnaire and Doppler ultrasound to evaluate the plaque extent and carotid intima-media thickness (cIMT). Propensity score matching included all cardiovascular risk (CVR) factors and corresponding laboratory markers. RESULTS: Data were available for 299 participants (199 pSS/100 controls), aged 59.4 years (50.6-65.0), 19.1% male. After matching, the pSS cohort had greater cIMT (p<0.001) and plaque extent (OR=1.82; 95% CI 1.14 to 2.95). Subgroup analyses of patients with pSS revealed that OI was associated with increased cIMT (p=0.025) and increased plaque occurrence compared with patients without OI (OR=1.74; 95% CI 1.02 to 3.01). OxLDL ab tended to be lower in patients with plaque (p=0.052). Correlations of higher Oxidized Low Density Lipoprotein (oxLDL) ab with EULAR Sjögren's Syndrome Disease Activity Index (p<0.001) and anti-Sjögren's-syndrome-related antigen A autoantibodies (SSA/Ro antibodies) (p=0.026) were observed. CONCLUSIONS: Subclinical atherosclerosis occurs earlier and more severely in patients with pSS. The difference in cIMT between pSS and controls seems mainly driven by patients with OI, suggesting that this subgroup is particularly at risk. OxLDL ab might protect against atherosclerotic progression in patients with pSS. CVR stratification and preventive medications such as Hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors should be discussed and further longitudinal studies are needed.


Assuntos
Aterosclerose , Biomarcadores , Espessura Intima-Media Carotídea , Lipoproteínas LDL , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/complicações , Síndrome de Sjogren/epidemiologia , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/diagnóstico , Masculino , Pessoa de Meia-Idade , Feminino , Aterosclerose/etiologia , Aterosclerose/epidemiologia , Aterosclerose/diagnóstico , Lipoproteínas LDL/sangue , Idoso , Estudos de Casos e Controles , Autoanticorpos/sangue , Autoanticorpos/imunologia , Fatores de Risco , Placa Aterosclerótica/epidemiologia
7.
Aging (Albany NY) ; 162024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38663914

RESUMO

BACKGROUND: N6-methyladenosine (m6A) methylation is involved in the pathogenesis of atherosclerosis (AS). Limited studies have examined the role of the m6A methyltransferase METTL5 in AS pathogenesis. METHODS: This study subjected the AS dataset to differential analysis and weighted gene co-expression network analysis to identify m6A methylation-associated differentially expressed genes (DEGs). Next, the m6A methylation-related DEGs were subjected to consensus clustering to categorize AS samples into distinct m6A subtypes. Single-cell RNA sequencing (scRNA-seq) analysis was performed to investigate the proportions of each cell type in AS and adjacent healthy tissues and the expression levels of key m6A regulators. The mRNA expression levels of METTL5 in AS and healthy tissues were determined using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS: AS samples were classified into two subtypes based on a five-m6A regulator-based model. scRNA-seq analysis revealed that the proportions of T cells, monocytes, and macrophages in AS tissues were significantly higher than those in healthy tissues. Additionally, the levels of m6A methylation were significantly different between AS and healthy tissues. METTL5 expression was upregulated in macrophages, smooth muscle cells (SMCs), and endothelial cells (ECs). qRT-PCR analysis demonstrated that the METTL5 mRNA level in AS tissues was downregulated when compared with that in healthy tissues. CONCLUSIONS: METTL5 is a potential diagnostic marker for AS subtypes. Macrophages, SMCs, and ECs, which exhibit METTL5 upregulation, may modulate AS progression by regulating m6A methylation levels.

8.
Acad Radiol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38664146

RESUMO

RATIONALE AND OBJECTIVES: Investigate the feasibility of using deep learning-based accelerated 3D T1-weighted volumetric isotropic turbo spin-echo acquisition (VISTA) for vessel wall magnetic resonance imaging (VW-MRI), compared to traditional Compressed SENSE and optimize acceleration factor (AF) to obtain high-quality clinical images. METHODS: 40 patients with atherosclerotic plaques in the intracranial or carotid artery were prospectively enrolled in our study from October 1, 2022 to October 31, 2023 underwent high-resolution vessel wall imaging on a 3.0 T MR system using variable Compressed SENSE (CS) AFs and reconstructed by an optimized artificial intelligence constrained Compressed SENSE (CS-AI). Images were reconstructed through both traditional CS and optimized CS-AI. Two radiologists qualitatively assessed the image quality scores of CS and CS-AI across different segments and quantitatively evaluated SNR (signal-to-noise ratio) and CNR (contrast-to-noise ratio) metrics. Paired t-tests, ANOVA, and Friedman tests analyzed image quality metrics. Written informed consent was obtained from all patients in this study. RESULTS: CS-AI groups demonstrated good image quality scores compared to reference scans until AF up to 12 (P < 0.05). The CS-AI 10 protocol provided the best images in the lumen of both normal and lesion sites (P < 0.05). The plaque SNR was significantly higher in CS-AI groups compared to CS groups until the AF increased to 12 (P < 0.05). CS-AI protocols had higher CNR compared to CS with whichever AF on both pre-and post-contrast T1WI (P < 0.05), The CNR was highest in the CS-AI 10 protocol on pre-contrast T1WI and in CS-AI 12 on post-contrast T1WI (P < 0.05). CONCLUSION: The study demonstrated the feasibility of using CS-AI technology to diagnose arteriosclerotic vascular disease with 3D T1 VISTA sequences. The image quality and diagnostic efficiency of CS-AI images were comparable or better than traditional CS images. Higher AFs are feasible and have potential for use in VW-MRI. The determination of standardized AFs for clinical scanning protocol is expected to help for empirical evaluation of new imaging technology.

9.
Mol Imaging Biol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664355

RESUMO

AIM: Atherosclerosis remains the pathological basis of myocardial infarction and ischemic stroke. Early and accurate identification of plauqes is crucial to improve clinical outcomes of atherosclerosis patients. Our study aims to evaluate the potential value of fibroblast activation protein inhibitor (FAPI)-04 PET/CT in identifying plaques via a preclinical rabbit model of atherosclerosis. METHODS: New Zealand white rabbits were fed high-fat diet (HFD), and randomly divided into the model group injured by the balloon, and the sham group only with incisions. Ultrasound was performed to detect plaques, and FAPI-avid was determined through Al18F-NOTA-FAPI-04 PET/CT. Mean standardized uptake values (SUVmean) in lesions were compared, and biodistribution of Al18F-NOTA-FAPI-04 and target-to-background ratios (TBRs) were calculated. Histological staining was performed to display arterial plaques, and autoradiography (ARG) was employed to measure the in vitro intensity of Al18F-NOTA-FAPI-04. At last, the correlation among FAP levels, plaque area, SUVmean values and fibrous cap thickness was assessed. RESULTS: The rabbit carotid and abdominal atherosclerosis model was established. Al18F-NOTA-FAPI-04 showed a higher uptake in carotid plaques (SUVmean 1.32 ± 0.11) and abdominal plaques (SUVmean 0.73 ± 0.13) compared to corresponding controls (SUVmean 1.07 ± 0.06; 0.46 ± 0.03) (P < 0.05). Biodistribution analysis of Al18F-NOTA-FAPI-04 revealed that the bigger plaques were delineated with higher TBRs. Pathological staining showed the formation of arterial plaques, and ARG staining exhibited a higher intensity of Al18F-NOTA-FAPI-04 in the bigger plaques. Lastly, plaque area was found to be positively correlated to FAP expression and SUVmean, while FAP expression was negatively correlated to fibrous cap thickness of plaques. CONCLUSIONS: We successfully achieve molecular imaging of fibroblast activation in atherosclerotic lesions of rabbits, suggesting Al18F-NOTA-FAPI-04 PET/CT may be a potentially valuable tool to identify plaques.

10.
J Transl Med ; 22(1): 352, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622667

RESUMO

BACKGROUND: Quinic acid (QA) and its derivatives have good lipid-lowering and hepatoprotective functions, but their role in atherosclerosis remains unknown. This study attempted to investigate the mechanism of QA on atherogenesis in Apoe-/- mice induced by HFD. METHODS: HE staining and oil red O staining were used to observe the pathology. The PCSK9, Mac-3 and SM22a expressions were detected by IHC. Cholesterol, HMGB1, TIMP-1 and CXCL13 levels were measured by biochemical and ELISA. Lipid metabolism and the HMGB1-SREBP2-SR-BI pathway were detected by PCR and WB. 16 S and metabolomics were used to detect gut microbiota and serum metabolites. RESULTS: QA or low-frequency ABX inhibited weight gain and aortic tissue atherogenesis in HFD-induced Apoe-/- mice. QA inhibited the increase of cholesterol, TMA, TMAO, CXCL13, TIMP-1 and HMGB1 levels in peripheral blood of Apoe-/- mice induced by HFD. Meanwhile, QA or low-frequency ABX treatment inhibited the expression of CAV-1, ABCA1, Mac-3 and SM22α, and promoted the expression of SREBP-1 and LXR in the vascular tissues of HFD-induced Apoe-/- mice. QA reduced Streptococcus_danieliae abundance, and promoted Lactobacillus_intestinalis and Ileibacterium_valens abundance in HFD-induced Apoe-/- mice. QA altered serum galactose metabolism, promoted SREBP-2 and LDLR, inhibited IDOL, FMO3 and PCSK9 expression in liver of HFD-induced Apoe-/- mice. The combined treatment of QA and low-frequency ABX regulated microbe-related Glycoursodeoxycholic acid and GLYCOCHENODEOXYCHOLATE metabolism in HFD-induced Apoe-/- mice. QA inhibited TMAO or LDL-induced HCAECs damage and HMGB1/SREBP2 axis dysfunction, which was reversed by HMGB1 overexpression. CONCLUSIONS: QA regulated the gut-liver lipid metabolism and chronic vascular inflammation of TMA/TMAO through gut microbiota to inhibit the atherogenesis in Apoe-/- mice, and the mechanism may be related to the HMGB1/SREBP2 pathway.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Proteína HMGB1 , Metilaminas , Camundongos , Animais , Pró-Proteína Convertase 9 , Proteína HMGB1/metabolismo , Ácido Quínico , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Metabolismo dos Lipídeos , Camundongos Knockout para ApoE , Aterosclerose/patologia , Inflamação , Colesterol , Apolipoproteínas E/metabolismo , Camundongos Endogâmicos C57BL
11.
Cardiovasc Diabetol ; 23(1): 128, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622690

RESUMO

BACKGROUND: Compelling evidence suggests that calcium/phosphorus homeostasis-related parameters may be linked to diabetes mellitus and cardiovascular events. However, few studies have investigated the association of fibroblast growth factor 23 (FGF23), α-klotho and FGF23/α-klotho ratio with atherosclerosis in patients with type 2 diabetes mellitus (T2DM). OBJECTIVE: This study was designed to evaluate whether FGF23, α-klotho and FGF23/α-klotho ratio are associated with T2DM and further to explore the relationships between these three factors and atherosclerosis in Chinese patients with T2DM. METHODS: Serum FGF23 and α-klotho levels were measured via an enzyme-linked immunosorbent assay (ELISA) kit, and the carotid intima-media thickness (CIMT) was assessed via high-resolution color Doppler ultrasonography. The associations of serum FGF23, α-klotho and FGF23/α-klotho ratio with atherosclerosis in T2DM patients were evaluated using multivariable logistic regression models. RESULTS: This cross-sectional study involved 403 subjects (207 with T2DM and 196 without T2DM), 41.7% of the patients had atherosclerosis, and 67.2% of the carotid intima were thickened to a thickness greater than 0.9 mm. Compared with those in the lowest tertile, higher tertiles of FGF23 levels and FGF23/α-klotho ratio were positively associated with T2DM after adjusting for covariates, and serum α-klotho concentration was inversely correlated with T2DM (all P values < 0.01). Moreover, elevated serum FGF23 levels and FGF23/α-klotho ratio were positively associated with CIMT and carotid atherosclerosis in T2DM patients (all P values < 0.01). Further spline analysis similarly revealed linear dose‒response relationship (all P values < 0.01). And there was still significant differences in CIMT and carotid atherosclerosis between the highest group of α-klotho and the reference group in T2DM patients (P values = 0.05). CONCLUSIONS: T2DM was positively linearly related to serum FGF23 concentration and FGF23/α-klotho ratio, and negatively correlated with serum α-klotho concentration. Furthermore, both FGF23 and FGF23/α-klotho ratio were positively correlated with CIMT and atherosclerosis in T2DM patients, while α-klotho was inversely correlated with both CIMT and atherosclerosis, although the associations were not completely significant. Prospective exploration and potential mechanisms underlying these associations remain to be further elucidated.


Assuntos
Aterosclerose , Doenças das Artérias Carótidas , Diabetes Mellitus Tipo 2 , Humanos , Doenças das Artérias Carótidas/diagnóstico por imagem , Doenças das Artérias Carótidas/etiologia , Espessura Intima-Media Carotídea , Estudos Transversais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Estudos Prospectivos , Fatores de Risco
12.
Sci Rep ; 14(1): 9037, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641617

RESUMO

We aimed to identify different trajectories of remnant cholesterol (RC) and investigate the association of RC trajectories with vascular endothelial function and atherosclerosis progression in a longitudinal cohort of the Chinese population. A total of 521 participants were included in the flow-mediated vasodilation (FMD) subcohort study, and 7775 participants were included in the brachial-ankle pulse wave velocity (baPWV) subcohort study. All participants had ≥ 3 medical examinations during the 10-year follow-up period. In the FMD subcohort study, three distinct RC trajectories were identified according to the RC range and changing pattern over time: "low" (57.58%), "moderate" (30.90%) and "high" (11.52%). The proportion of the three groups with vascular endothelial dysfunction (FMD < 7.0%) was 20.00%, 39.75% and 60.00% respectively. Taking the low group as a reference, participants in the moderate and high groups had over 1.88 and 2.94 times the odds of vascular endothelial dysfunction (P = 0.048). In the baPWV subcohort study, three distinct RC trajectories were also identified: "low" (54.29%), "moderate" (38.97%) and "high" (6.74%). The proportion of the three groups with atherosclerosis (baPWV > 1400 cm/s) was 38.79%, 51.26% and 59.01% respectively. Taking the low group as a reference, participants in the moderate and high groups had over 1.46 and 2.16 times the odds of atherosclerosis (P < 0.001). The findings indicated that distinct RC trajectories are significantly associated with vascular endothelial function and atherosclerosis. Regular monitoring to identify persistent increases in RC may be more helpful in identifying individuals with a high risk of cardiovascular disease.


Assuntos
Aterosclerose , Rigidez Vascular , Adulto , Humanos , Estudos Longitudinais , Índice Tornozelo-Braço , Endotélio Vascular , Análise de Onda de Pulso , Aterosclerose/epidemiologia , Colesterol , China/epidemiologia , Fatores de Risco
13.
Indian Heart J ; 76 Suppl 1: S121-S129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38599726

RESUMO

This review article describes the pathophysiological mechanisms linking Apolipoprotein B (Apo-B) and atherosclerosis, summarizes the existing evidence on Apo B as a predictor of atherosclerotic cardiovascular disease and recommendations of (inter)national treatment guidelines regarding Apo B in dyslipidemia management. A single Apo B molecule is present in every particle of very low-density lipoprotein, intermediate density lipoprotein, low density lipoprotein, and lipoprotein(a). This unique single Apo B per particle ratio makes plasma Apo B concentration a direct measure of the number of circulating atherogenic lipoproteins. This review of global evidence on Apo B as a biomarker for atherosclerosis confirms that Apo B is a single atherogenic lipid marker present in all lipids sub-fractions except HDL-C, and thus, Apo B integrates and extends the information from triglycerides and cholesterol, which could simplify and improve care for atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , Biomarcadores , Humanos , Apolipoproteínas B , Aterosclerose/diagnóstico , Doenças Cardiovasculares/diagnóstico , HDL-Colesterol , Triglicerídeos
14.
Catheter Cardiovasc Interv ; 103(6): 972-981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38606477

RESUMO

BACKGROUND: Ethylene diamine tetra-acetic acid (EDTA) is a chelating agent used to dissolve calcium deposits but evidence in decalcifying atherosclerotic lesions is limited. AIMS: We assessed the feasibility and efficacy of EDTA delivered via porous balloon to target calcified lesions in cadaveric below-the-knee (BTK) arteries. METHODS: Using porcine carotid arteries, EDTA concentration was measured in the arterial wall and outside the artery at the 0-, 0.5-, 4-, and 24-h circulation after the injection through a porous balloon. In cadaver BTK samples, the proximal and distal anterior tibial artery (ATA) and distal posterior tibial artery (PTA) were studied. EDTA-2Na/H2O or EDTA-3Na/H2O were administrated using a porous balloon, then circulated for 6 h for EDTA-3Na/H2O and 24 h for EDTA-2Na/H2O and EDTA-3Na/H2O. Micro-CT imaging of the artery segments before and after the circulation and cross-sectional analyses were performed to evaluate calcium burden. RESULTS: In the porcine carotid study, EDTA was delivered through a porous balloon present in the arterial wall and was retained there for 24 h. In BTK arteries, cross-sectional analyses of micro-CT revealed a significant decrease in the calcium area in the distal ATA segment under 24-h circulation with EDTA-2Na/H2O and in the distal ATA segment under 24-h circulation with EDTA-3Na/H2O. The proximal ATA segment under 6-h circulation with EDTA-3Na/H2O showed no significant change in any parameters of calcium CONCLUSION: EDTA-3Na/H2O or EDTA-2Na/H2O with longer circulation times resulted in greater calcium reduction in atherosclerotic lesion. EDTA may have a potential therapeutic option for the treatment of atherosclerotic calcified lesions.


Assuntos
Angioplastia com Balão , Ácido Edético , Estudos de Viabilidade , Calcificação Vascular , Animais , Ácido Edético/farmacologia , Angioplastia com Balão/instrumentação , Porosidade , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/terapia , Cadáver , Artérias da Tíbia/diagnóstico por imagem , Quelantes de Cálcio/farmacologia , Fatores de Tempo , Microtomografia por Raio-X , Humanos , Dispositivos de Acesso Vascular , Desenho de Equipamento , Sus scrofa , Doença Arterial Periférica/terapia , Doença Arterial Periférica/diagnóstico por imagem , Doença Arterial Periférica/metabolismo , Placa Aterosclerótica , Suínos
15.
RMD Open ; 10(2)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631846

RESUMO

OBJECTIVE: To assess the predictive value of four cardiovascular (CV) risk algorithms for identifying high-risk psoriatic arthritis (PsA) patients. METHODS: Evaluation of patients with PsA enrolled in the Spanish prospective project CARdiovascular in RheuMAtology. Baseline data of 669 PsA patients with no history of CV events at the baseline visit, who were followed in rheumatology outpatient clinics at tertiary centres for 7.5 years, were retrospectively analysed to test the performance of the Systematic Coronary Risk Assessment (SCORE), the modified version (mSCORE) European Alliance of Rheumatology Associations (EULAR) 2015/2016, the SCORE2 algorithm (the updated and improved version of SCORE) and the QRESEARCH risk estimator version 3 (QRISK3). RESULTS: Over 4790 years of follow-up, there were 34 CV events, resulting in a linearised rate of 7.10 per 1000 person-years (95% CI 4.92 to 9.92). The four CV risk scales showed strong correlations and all showed significant associations with CV events (p<0.001). SCORE, mSCORE EULAR 2015/2016 and QRISK3 effectively differentiated between low and high CV risk patients, although the cumulative rate of CV events observed over 7.5 years was lower than expected based on the frequency predicted by these risk scales. Additionally, model improvement was observed when combining QRISK3 with any other scale, particularly the combination of QRISK3 and SCORE2, which yielded the lowest Akaike information criterion (411.15) and Bayesian information criterion (420.10), making it the best predictive model. CONCLUSIONS: Risk chart algorithms are very useful for discriminating PsA at low and high CV risk. An integrated model featuring QRISK3 and SCORE2 yielded the optimal synergy of QRISK3's discrimination ability and SCORE2's calibration accuracy.


Assuntos
Artrite Psoriásica , Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/complicações , Estudos Prospectivos , Estudos Retrospectivos , Artrite Psoriásica/complicações , Teorema de Bayes , Seguimentos , Algoritmos
16.
Front Physiol ; 15: 1327794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638277

RESUMO

Redox processes can modulate vascular pathophysiology. The endoplasmic reticulum redox chaperone protein disulfide isomerase A1 (PDIA1) is overexpressed during vascular proliferative diseases, regulating thrombus formation, endoplasmic reticulum stress adaptation, and structural remodeling. However, both protective and deleterious vascular effects have been reported for PDIA1, depending on the cell type and underlying vascular condition. Further understanding of this question is hampered by the poorly studied mechanisms underlying PDIA1 expression regulation. Here, we showed that PDIA1 mRNA and protein levels were upregulated (average 5-fold) in the intima and media/adventitia following partial carotid ligation (PCL). Our search identified that miR-204-5p and miR-211-5p (miR-204/211), two broadly conserved miRNAs, share PDIA1 as a potential target. MiR-204/211 was downregulated in vascular layers following PCL. In isolated endothelial cells, gain-of-function experiments of miR-204 with miR mimic decreased PDIA1 mRNA while having negligible effects on markers of endothelial activation/stress response. Similar effects were observed in vascular smooth muscle cells (VSMCs). Furthermore, PDIA1 downregulation by miR-204 decreased levels of the VSMC contractile differentiation markers. In addition, PDIA1 overexpression prevented VSMC dedifferentiation by miR-204. Collectively, we report a new mechanism for PDIA1 regulation through miR-204 and identify its relevance in a model of vascular disease playing a role in VSMC differentiation. This mechanism may be regulated in distinct stages of atherosclerosis and provide a potential therapeutic target.

17.
Front Mol Biosci ; 11: 1365447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660376

RESUMO

Background: Epidemiological research has demonstrated that there is a connection between lipid metabolism disorder and an increased risk of developing arteriosclerosis (AS) and abdominal aortic aneurysm (AAA). However, the precise relationship between lipid metabolism, AS, and AAA is still not fully understood. The objective of this study was to examine the pathways and potential fatty acid metabolism-related genes (FRGs) that are shared between AS and AAA. Methods: AS- and AAA-associated datasets were retrieved from the Gene Expression Omnibus (GEO) database, and the limma package was utilized to identify differentially expressed FRGs (DFRGs) common to both AS and AAA patients. Functional enrichment analysis was conducted on the (DFRGs), and a protein-protein interaction (PPI) network was established. The selection of signature genes was performed through the utilization of least absolute shrinkage and selection operator (LASSO) regression and random forest (RF). Subsequently, a nomogram was developed using the results of the screening process, and the crucial genes were validated in two separate external datasets (GSE28829 and GSE17901) as well as clinical samples. In the end, single-sample gene set enrichment analysis (ssGSEA) was utilized to assess the immune cell patterns in both AS and AAA. Additionally, the correlation between key crosstalk genes and immune cell was evaluated. Results: In comparison to control group, both AS and AAA patients exhibited a decrease in fatty acid metabolism score. We found 40 DFRGs overlapping in AS and AAA, with lipid and amino acid metabolism critical in their pathogenesis. PCBD1, ACADL, MGLL, BCKDHB, and IDH3G were identified as signature genes connecting AS and AAA. Their expression levels were confirmed in validation datasets and clinical samples. The analysis of immune infiltration showed that neutrophils, NK CD56dim cells, and Tem cells are important in AS and AAA development. Correlation analysis suggested that these signature genes may be involved in immune cell infiltration. Conclusion: The fatty acid metabolism pathway appears to be linked to the development of both AS and AAA. Furthermore, PCBD1, ACADL, MGLL, BCKDHB, and IDH3G have the potential to serve as diagnostic markers for patients with AS complicated by AAA.

18.
Front Endocrinol (Lausanne) ; 15: 1369369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660518

RESUMO

Aims: To determine the roles of matrix metallopeptidase-9 (MMP9) on human coronary artery smooth muscle cells (HCASMCs) in vitro, early beginning of atherosclerosis in vivo in diabetic mice, and drug naïve patients with diabetes. Methods: Active human MMP9 (act-hMMP9) was added to HCASMCs and the expressions of MCP-1, ICAM-1, and VCAM-1 were measured. Act-hMMP9 (n=16) or placebo (n=15) was administered to diabetic KK.Cg-Ay/J (KK) mice. Carotid artery inflammation and atherosclerosis measurements were made at 2 and 10 weeks after treatment. An observational study of newly diagnosed drug naïve patients with type 2 diabetes mellitus (T2DM n=234) and healthy matched controls (n=41) was performed and patients had ultrasound of carotid arteries and some had coronary computed tomography angiogram for the assessment of atherosclerosis. Serum MMP9 was measured and its correlation with carotid artery or coronary artery plaques was determined. Results: In vitro, act-hMMP9 increased gene and protein expressions of MCP-1, ICAM-1, VCAM-1, and enhanced macrophage adhesion. Exogenous act-hMMP9 increased inflammation and initiated atherosclerosis in KK mice at 2 and 10 weeks: increased vessel wall thickness, lipid accumulation, and Galectin-3+ macrophage infiltration into the carotid arteries. In newly diagnosed T2DM patients, serum MMP9 correlated with carotid artery plaque size with a possible threshold cutoff point. In addition, serum MMP9 correlated with number of mixed plaques and grade of lumen stenosis in coronary arteries of patients with drug naïve T2DM. Conclusion: MMP9 may contribute to the initiation of atherosclerosis and may be a potential biomarker for the early identification of atherosclerosis in patients with diabetes. Clinical trial registration: https://clinicaltrials.gov, identifier NCT04424706.


Assuntos
Aterosclerose , Biomarcadores , Diabetes Mellitus Tipo 2 , Metaloproteinase 9 da Matriz , Placa Aterosclerótica , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Animais , Biomarcadores/metabolismo , Camundongos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Placa Aterosclerótica/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Aterosclerose/metabolismo , Aterosclerose/patologia , Idoso , Diagnóstico Precoce , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Diabetes Mellitus Experimental , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/metabolismo , Vasos Coronários/patologia , Vasos Coronários/metabolismo
19.
Front Genet ; 15: 1361445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660678

RESUMO

Introduction: Peripheral vascular atherosclerosis (PVA) is a chronic inflammatory disease characterized by lipid accumulation in blood vessel walls, leading to vessel narrowing and inadequate blood supply. However, the molecular mechanisms underlying PVA remain poorly understood. In this study, we employed a combination of Mendelian randomization (MR) analysis and integrated transcriptomics to identify the critical gene signature associated with PVA. Methods: This study utilized three public datasets (GSE43292, GSE100927 and GSE28829) related to peripheral vascular atherosclerosis obtained from the Gene Expression Omnibus database. Instrumental variables (IVs) were identified through expression quantitative trait loci (eQTL) analysis, and two-sample MR analysis was performed using publicly available summary statistics. Disease critical genes were identified based on odds ratios and intersected with differentially expressed genes in the disease dataset. GSE28829 dataset was used to validate the screened disease critical genes. Functional enrichment analysis, GSEA analysis, and immune cell infiltration analysis were performed to further characterize the role of these genes in peripheral vascular atherosclerosis. Results: A total of 26,152 gene-related SNPs were identified as IVs, and 242 disease-associated genes were identified through MR analysis. Ten disease critical genes (ARHGAP25, HCLS1, HVCN1, RBM47, LILRB1, PLAU, IFI44L, IL1B, IFI6, and CFL2) were significantly associated with peripheral vascular atherosclerosis. Functional enrichment analysis using KEGG pathways revealed enrichment in the NF-kappa B signaling pathway and osteoclast differentiation. Gene set enrichment analysis further demonstrated functional enrichment of these genes in processes related to vascular functions and immune system activation. Additionally, immune cell infiltration analysis showed differential ratios of B cells and mast cells between the disease and control groups. The correlations analysis highlights the intricate interplay between disease critical genes and immune cells associated with PVA. Conclusion: In conclusion, this study provides new insights into the molecular mechanisms underlying PVA by identifying ten disease critical genes associated with the disease. These findings, supported by differential expression, functional enrichment, and immune system involvement, emphasize the role of these genes in vascular function and immune cell interactions in the context of PVA. These findings contribute to a better understanding of PVA pathogenesis and offer potential targets for further mechanistic exploration and therapeutic interventions.

20.
Regen Ther ; 27: 354-364, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38645280

RESUMO

Background: The senescence of endothelial cells is of great importance involving in atherosclerosis (AS) development. Recent studies have proved the protective role of mesenchymal stem cell-derived extracellular vesicles in AS, herein, we further desired to unvei their potential regulatory mechanisms in endothelial cell senescence. Methods: Senescence induced by H2O2 in primary mouse aortic endothelial cells (MAECs) was evaluated by SA-ß-gal staining. Targeted molecule expression was detected by qRT-PCR and Western blotting. The biological functions of MAECs were determined by CCK-8, flow cytometry, transwell, and tube formation assays. Oxidative injury was assessed by LDH, total and lipid ROS, LPO and MDA levels. The proliferation of adipose-derived mesenchymal stem cell (ADSCs) was analyzed by EdU assay. Effect of ADSCs-derived extracellular vesicles (ADSC-EVs) on AS was investigated in HFD-fed ApoE-/- mice. Results: miR-674-5p was up-regulated, while C1q/TNF-related protein 9 (CTRP9) was down-regulated in H2O2-induced senescent MAECs. CTRP9 was demonstrated as a target gene of miR-674-5p. miR-674-5p inhibition restrained senescence, oxidative stress, promoted proliferation, migration, and angiogenesis of H2O2-stimulated MAECs via enhancing CTRP9 expression. Moreover, treatment with ADSC-EVs inhibited H2O2-induced senescence and dysfunction of MAECs through regulating miR-674-5p/CTRP9 axis. In the in vivo AS mouse model, ADSC-EVs combination with miR-674-5p silencing slowed down AS progression via up-regulation of CTRP9. Conclusion: ADSC-EVs repressed endothelial cell senescence and improved dysfunction via promotion of CTRP9 expression upon miR-674-5p deficiency during AS progression, which might provide vital evidence for ADSC-EVs as a promising therapy for AS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...